碳酸钙土黏聚力

纳米碳酸钙影响下红黏土强度特性试验研究
2017年5月30日 — 为了探寻纳米碳酸钙对桂林红黏土力学强度特性的影响机理,利用TSZ1型三轴试验仪进行不固结不排水三轴压缩试验,分析了在不同干密度条件下各梯度纳米碳 2024年5月14日 — 微生物诱导碳酸钙沉积技术(MICP)是近年来兴起的经济、环保和耐久的防风治沙方法。 为了研究MICP 固化土体的工程特性,本文对MICP进行了系统的归纳总结, 微生物诱导碳酸钙沉积(MICP)固化土体研究进展 hanspub2021年2月27日 — 摘要为了探寻纳米碳酸钙对桂林红黏土力学强度特性的影响机理,利 用TSZ 1型三轴试验仪进行不固结不排水三轴压缩试验,分 析了在不同干密度条件下各梯度纳米 纳米碳酸钙影2023年8月6日 — 碳酸钙是黏粒和有机质含量低的钙质土壤中的主要胶结物质。 碳酸钙对团聚体稳定性的作用可能依赖于碳酸钙颗粒分布和黏粒含量,高含量黏粒和细颗粒碳酸钙对 胶结物质驱动的土壤团聚体形成过程与稳定机制 issas

基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良
2019年2月12日 — 采用微生物诱导碳酸钙沉积(MICP)技术对黏性土进行改性处理,以改善其水稳性与抗侵蚀能力 利用喷洒法将配制的微生物菌液及胶结液先后喷洒至黏性土表层进行MICP处理,并开展一系列崩解试验,通 2024年8月1日 — 黏聚力与内摩擦角提升原因在于MICP加固生成的碳酸钙通过粘结粉土颗粒,填充堵塞颗粒间孔隙,使平均非孔隙面积比增大,进而提升土体强度。微生物加固粉土的强度特性及加固机理研究基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良 浙江大学学报 (工学版) 2019, Vol 53 Issue (8): 14381447 DOI: 103785/jissn1008973X201908002 土木与建筑工程 基于微生物诱导碳酸钙沉积技术的黏 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良该文采用巨大芽孢杆菌对砂质黏性紫色土进行固化,通过MICP试管试验、三轴固结不排水剪切试验和浸水无侧限抗压强度试验,分析了胶结液中氯化钙(CaCl2)和尿素(Urea) 微生物固化砂质黏性紫色土的三轴抗剪强度与浸水抗压强度

基于微生物诱导碳酸钙沉积 (MICP)改善淤泥质土强度 百度学术
摘要: 采用微生物诱导碳酸钙沉积 (MICP)对淤泥质土进行处理,用于提高淤泥质土的强度以武汉东湖淤泥为研究对象,对MICP改性淤泥质土进行快剪试验与固结快剪试验试验结果 2022年12月26日 — 微生物诱导碳酸钙沉积固化三峡库区黏性紫色土试验研究 DOI: 1011835/jissn209667172023047 夏振尧 1,2,3 董欣慧 1 胡欢 1 张伦 1 朱志 微生物诱导碳酸钙沉积固化三峡库区黏性紫色土试验研究2022年12月26日 — 通过扫描电镜观察发现MICP加固紫色土形成了大量球状碳酸钙晶体和片状碳酸钙晶体,分布于土壤颗粒表面和间隙中起胶结作用并增加土颗粒表面粗糙度,从而提升了土的黏聚力和内摩擦角。 MICP可以有效提高紫色土的强度,在菌液浓度为OD 600 =1 微生物诱导碳酸钙沉积固化三峡库区黏性紫色土试验研究2021年2月27日 — 增加,红黏土黏聚力、内摩擦角以及抗剪强度呈现先减小后增大的趋势;纳米碳酸钙的掺入改变了原有的介质电荷pH值,使 得红黏土原有的氧化铁胶结吸附平衡发生改变,形成新的钙质胶结团粒,改变了红黏土的强度特性;加入纳米碳酸钙后起始纳米碳酸钙影响下红黏土强度特性试验研究

EICP木质素联合固化粉土的试验研究
2021年2月24日 — EICP木质素联合固化技术能提高土体的抗剪强度和粘聚力,通过微观试验可以看出,木质素的作用机理主要是改变了EICP产生分散碳酸钙的方式,为碳酸钙提供成核位点,在土颗粒间隙中将无规律的碳酸钙聚拢成型。2023年8月6日 — 碳酸钙对团聚体稳定性的作用可能依赖于碳酸钙颗粒分布和黏粒含量,高含量黏粒和细颗粒碳酸钙对土壤有很好的团聚作用 [29]。 在弱碱性氧化环境的黄土堆积过程中,粉尘堆积物可通过雨水、霜雪、生物活动等作用发生次生碳酸盐化,次生碳酸盐与黄土粉尘中黏粒物质结合形成微团聚体 [ 30 ] 。胶结物质驱动的土壤团聚体形成过程与稳定机制 issas2024年8月1日 — 摘要 针对华北地区广泛分布的黄河冲积粉土级配差、强度低的问题,采用微生物诱导碳酸钙沉淀(MICP)技术对其进行加固。通过三轴试验研究加固粉土的强度特性,通过微观结构测试分析其微观机理;结合宏观现象和微观机理揭示强度加固机理。结果表明:MICP加固后粉土的强度得到了大幅提升;其黏聚力和 微生物加固粉土的强度特性及加固机理研究2023年5月20日 — 对于缺乏粘聚力的颗粒材料,如砂子等,在干燥条件下,其安息角等于内摩擦角(存在争论)。 这里用无限边坡(Infinite Slope Analysis)分析的方法来进行推导并假定潜在滑动面与边坡表面平行(易于应用极限平衡法, 并且如果不平行, 也就不满足无限边坡的假定)从摩擦角到内摩擦角再到有效内摩擦角与边坡稳定 知乎

纳米碳酸钙影响下红黏土强度特性试验研究
2021年2月27日 — 增加,红黏土黏聚力、内摩擦角以及抗剪强度呈现先减小后增大的趋势;纳米碳酸钙的掺入改变了原有的介质电荷pH值,使 得红黏土原有的氧化铁胶结吸附平衡发生改变,形成新的钙质胶结团粒,改变了红黏土的强度特性;加入纳米碳酸钙后起始2009年8月4日 — 瑚、海藻、贝壳等)成因的、富含碳酸钙或碳酸镁等物质的特殊岩土介质,主要分布于热带海洋中。钙质 砂的主要化学成分为CaCO。。钙质砂有骨骸、球粒、包粒和团粒4种颗粒类型[1’2]。棱角大,有内孔隙,孔隙比高,易破碎,是钙质砂的主要特征[1’2]。钙质砂的胶结性及对力学性质影响的实验研究。 2021年2月27日 — 角降低较小;密实度90%时,含水量大于5%,黏聚力降低较小;(3)密实度对吹填珊瑚砂的黏聚力影响规律不明显,密实度对 内摩擦角影响较显著,当含水量大于5%时,随着密实度的增加内摩擦角显著增大;(4)在高荷载条件下,含水量和密实度对中国南海岛礁吹填珊瑚砂剪切力学特性2016年4月26日 — (3)硝酸会溶蚀蒙脱石,导致土体粘聚力降低,浸泡中期粘聚力增大的机理尚不明确。超纯水和碱性条件下均生成了沸石类矿物和胶结物水化硅酸钙(CSH)。超纯水条件下,还有胶结物碳酸钙(CaCO3)生成。 这些新生胶结物的胶结键强度远大于 中国科学院机构知识库网格系统: 蒙脱石在酸碱条件下的力学效应

木质素联合固化粉土的试验研究
2021年2月24日 — 土颗粒之间相互联结最好,红圈标出的是木质素和 碳酸钙联结在一起形成的花瓣状的胶结物,填充了 土颗粒之间的孔隙,说明木质素为碳酸钙提供了成 核位点,弥补了EICP技术中没有成核位点的缺陷, 在宏观上可以体现为提高抗剪强度和黏聚力,改善 土体的工 2020年11月9日 — MICP技术是近年来在国内兴起的一项多学科交叉的技术,工程技术人员将它引入到土木工程中,使得土体各项性能得以改良;黄河中下游的粉性土水稳定性差,毛细水作用大,干燥时强度高但潮湿时强度显著下降,利用MICP技术加固粉性土值得研究。改良微生物诱导碳酸钙沉淀技术加固粉性土力学性能2024年2月27日 — 黏聚力、泊松比的影响较显著,其中对黏聚力和泊松比的影响最大,贡献率分别为83.9%、78.0%; 膨润土质量比对相似材料内摩擦角和泊松比的影响仅次于石膏与河砂的质量比,贡献率分别为基于正交试验的千枚岩相似材料配比研究 csust风化程度整体趋势随深度减小而增强,风化强度最大相差1518%。风化程度与黏粒比例、阳离子交换量、黏聚力成正相关。上层风化程度大,黏粒比例高,黏聚力大,土体稳定; 下层风化程度弱,黏粒比例低,黏聚力小更易被侵蚀,造成土体易崩塌,形成崩岗。鄂东南花岗岩崩岗剖面土体风化特征

红粘土改良研究现状综述 百度文库
陈学军等(2017)采用三轴试验研究纳米碳酸钙改良红粘土的机理,结果表明,往红粘土中掺入纳米碳酸钙会增加红粘土黏聚力、内摩擦角以及抗剪强度,使得红粘土原有的氧化铁胶结吸附平衡发生改变,形成新的钙质胶结团粒,改变了红粘土的强度特性。2020年5月19日 — 大型物理模型试验是研究复杂工程问题的重要方法,如何快速、准确地确定相似材料配比是试验中至关重要的一环为降低试验成本、简化试验步骤、充分调用原料性能,采用河砂、水泥和石膏这三种最普通的原料,以骨胶比(河砂与水泥石膏的质量比)和水膏比(水泥与石膏的质量比)为变量,进行了45 大尺寸工程模型试验中的相似材料配比试验研究 NEU2011年2月23日 — 方面有显著提高,尤其体现在黏聚力上,主要原因是 配比后的重塑土发生胶接作用,各种物理化学作用 产生的固化胶结力促进了颗粒间黏聚力的增长[6]。改良土早期抗剪强度偏低,随着时间的推移,7d抗 剪强度显著提高,主要表现在改良土的黏聚力有显改良黄土强度特性与工程处置试验研究2019年9月6日 — 高,但是粘聚力与内摩擦角的增大规律并不相同:粘聚力的增大速率随水泥掺量的增 大而不断减小,内摩擦角的增大规律随水泥掺量的增大而呈“S”型。关键词:红黏土;水泥土;直剪试验;内摩擦角;粘聚力 中图分类号:TU411 文献标志码:B 文章编号:16730062(2019)04水泥掺量对红粘土固结体抗剪特性影响的试验研究

膨润土碳酸钙混合物的力学特性
2018年5月7日 — 摘要: 通过在膨润土中掺入不同量的 CaCO 3 模拟高放射性核废料(highlevel radioactive waste,HLW)处置库周围地 下水侵入屏障生成 CaCO 3 后膨润土性状的变化。 通过配置 4 组不同 CaCO 3 掺入量的膨润土进行了有荷膨胀试验、压缩试验和直剪试验,运用太沙基一维固结理论计算了渗透系数,并采用扫描电子显微镜 2019年4月10日 — 的聚丙烯纤维与石英砂均匀混合,然后基于微生物诱导碳酸钙沉积(MICP)技术对土样进行固化,并开展了一系列无 侧限抗压试验,同时采用酸洗法测定了各组试样中的碳酸钙含量,进一步分析了试样的微观结构及纤维–土颗粒之间的 界面作用特征。纤维加筋微生物固化砂土的力学特性2020年6月11日 — 摘 要:微生物诱导碳酸钙沉积(MICP )能够加固散粒土体,是岩土工程中新兴绿色加固技术之一。然而,关于微生物加固机理以及矿化形成过程的研究尚不多见。基于微流控芯片技术开发了微生物加固可视化系统,利用该系统开展了微生物诱导 《岩土工程学报》2020年第6期中文摘要棕壤、褐土关系 1都有粘化过程:棕壤以淋淀粘化(机械淋淀粘化) 为主,褐土淋溶粘化和残积粘化均有,以后者为主。 2CaCO3积聚,与降水量有关,也和母质有关,碳 酸盐母质上发育为褐土,而非碳酸钙母质发育为棕 壤。土壤地理第五章棕壤棕壤于褐土 百度文库

(PDF) 微生物加固砂土弹塑性本构模型 (The elastoplastic
2021年9月3日 — PDF 微生物诱导碳酸钙沉淀 MICP)是一种利用环境友好的微生物加固岩土体的新方法 。 发现石英砂和钙质砂经 MICP 加固后土体黏聚力 都有 所增加 2017年4月8日 — 高、粘粒和氧化铁铝较高的土壤中,团聚体的形成主 要靠粘粒的内聚力及铁铝氧化物的胶结作用[4G6] 在粘粒和有机质含量低的钙质土壤中,碳酸钙成为 土壤团聚体的重要胶结剂[7]碳酸钙参与了黄土高 原地区土壤约99%的团聚体形成[8]与团聚特征的影响本文选取5种碳酸钙含量(429、1745、9866、13185、14382 g/kg)差异显著的北方碱性旱地农田土壤(黑土、淡黑钙土、潮土、灰钙土和黄绵土)为研究对象,分析土壤及其各粒级团聚体中有机碳、碳酸钙和不同形态钙含量的分布特征及相关性,探讨碳酸钙对碱性旱地土壤有机碳的影响。石灰性土壤团聚体中钙形态特征及其与有机碳含量的关系土体抗剪强度作为结构设计最重要的参数,受含水率影响较大,随着淤泥中含水率增大,其呈降低趋势。高含水率亦影响土体粘聚力,使土颗粒间作用力减弱。黄丽珊的研究表明,淤泥的粘聚力与液限和含水率之差呈正比,表明粘聚力受含水率影响。淤泥(土力学)百度百科

人工胶结球状颗粒材料的三轴试验研究
2018年4月3日 — 到50%之间时,强度增长较缓;③试样的黏聚力随含蜡率的变化存在最小值,同一含蜡率下,钢珠 试样黏聚力较大,内摩擦角一般较小,且含蜡率对玻璃珠试样内摩擦角的影响比钢珠大。关键词:球状颗粒;人工胶结;三轴试验;黏聚力;内摩擦角2020年1月5日 — 由于这一转变过程极短,故黏聚力和峰值强度随碳酸钙含量的变化呈现出非线性特征(见 图 5、图 8)。 综上可知,碳酸钙晶体的胶结作用对试样剪切强度提高的贡献较大 [14]。随着碳酸钙含量的提高,颗粒间起胶结作用的碳酸钙不断增加,试样的胶结强度越大。微生物固化砂土强度增长机理及影响因素试验研究 中文摘要 针对黄河冲积平原地区的粉土颗粒均匀、黏聚力低、水稳性差,雨季时易出现水害,然而现有加固方法环保性不足的问题,利用绿色环保的微生物诱导碳酸钙沉淀(Microbially Induced Calcite Precipitation,MICP)技术进行加固首先,选用巴氏芽孢杆菌作为微生物 国家科技期刊开放平台 ISTIC2022年2月21日 — 刘强等 [8]、范明明等 [9] 发现糯米浆对调控碳酸钙晶体形貌和晶型有一定的影响。糯米浆改良土遗址研究集中于糯米浆在糊化后可以调控碳酸钙晶体,进而改善土遗址性能等方面。而糯米浆作为有机物质对微生物矿化土体具有长期的影响。糯米浆改良戚城遗址仿遗址土强度特性与作用机理

微生物诱导碳酸钙沉积(MICP)固化土体研究进展 汉斯出版社
5 天之前 — 土地荒漠化严重危害人类的生存和可持续发展。微生物诱导碳酸钙沉积技术(MICP)是近年来兴起的经济、环保和耐久的防风治沙方法。为了研究MICP固化土体的工程特性,本文对MICP进行了系统的归纳总结,从MICP的国内外发展与现状、MICP固化土体的力学特性、MICP固化土体的作用机理分析了MICP对固化土体 摘要: 采用微生物诱导碳酸钙沉积(MICP)技术对黏性土进行改性处理,以改善其水稳性与抗侵蚀能力 利用喷洒法将配制的微生物菌液及胶结液先后喷洒至黏性土表层进行MICP处理,并开展一系列崩解试验,通过数字图像 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良2020年1月5日 — 微生物固化砂土的强度主要包括土骨架强度和碳酸钙晶体胶结强度两部分,前者受土体性质及相关参数影响,后者主要取决于碳酸钙晶体的含量。 采用合适的砂土初始密实度,适当提高胶结液浓度以及胶结液中尿素的浓度占比,均可提高微生物固化砂土试样 微生物固化砂土强度增长机理及影响因素试验研究 在一定含水量的条件下,因土粒中含有盐分,使土粒间的距离增大,而内聚力及内摩擦角则随之减小,土体的强度降低。 因此,盐渍土的强度与含水量关系密切,含水量较低且含盐量高时,土的强度就越高,反之较低。盐渍土的工程性质百度文库

MICP作用下根土复合体强度研究 hanspub
2021年3月30日 — 通过 图3看出,加入MICP的根土复合体抗剪强度在任何含根量下都要高于未加入MICP的根土复合体,这是由于MICP以微生物为核心产生的具有胶结作用的碳酸钙减少了土体间的孔隙,增强了土体间的粘聚力;在04%时提高了1699 kPa,此时的MICP对根土 2017年4月25日 — 由图24可见:粘聚力随压实度的增大而增加,压实度增大,土粒间的距离减小,粒间引力增大,故粘聚力增加。 抗剪强度是内摩擦角与粘聚力的综合反映,根据前面的试验结果,得出抗剪强度与压实度之间的关系,结果见图25。黄土的物理力学性质doc2021年2月27日 — 小,干湿循环对SH固化黄土的黏聚力影响明显。不同掺量的SH固化黄土试件经3次干湿循环黏聚力下降,第4次循环后略 有增大再下降,经多次循环下降平缓。经3~4次干湿循环的固化黄土试件的内摩擦角均有不同程度的降低,随后基本趋于稳 定。固化黄土的干湿循环特性研究2018年4月18日 — 利用MICP技术加固福建标准砂,进行不同围压下的三轴试验,结果表明,标准砂加固前后黏聚力的提高值为601 kPa。 前后,高速公路路基在变形及稳定性等方面宏观力学性质的提高,推断了微生物诱导沉淀碳酸钙技术加固路基方法在岩土 工程中 微生物加固路基强度及稳定性

EICP与木质素联合改性粉土边坡抗雨蚀试验研究 fx361cc
2024年1月23日 — 试样D2喷洒的EICP溶液为反应3d后的,因为EICP溶液的作用是在土中生成碳酸钙,填充土体孔隙,相比试样D1直接将 B1的碳酸钙含量提高了2208%,亦可说明添加木质素可改善EICP技术缺乏成核位点的问题,使得碳酸钙富集从而提高黏聚力,增强土 颗粒间胶结 2022年12月26日 — 通过扫描电镜观察发现MICP加固紫色土形成了大量球状碳酸钙晶体和片状碳酸钙晶体,分布于土壤颗粒表面和间隙中起胶结作用并增加土颗粒表面粗糙度,从而提升了土的黏聚力和内摩擦角。 MICP可以有效提高紫色土的强度,在菌液浓度为OD 600 =1 微生物诱导碳酸钙沉积固化三峡库区黏性紫色土试验研究2021年2月27日 — 增加,红黏土黏聚力、内摩擦角以及抗剪强度呈现先减小后增大的趋势;纳米碳酸钙的掺入改变了原有的介质电荷pH值,使 得红黏土原有的氧化铁胶结吸附平衡发生改变,形成新的钙质胶结团粒,改变了红黏土的强度特性;加入纳米碳酸钙后起始纳米碳酸钙影响下红黏土强度特性试验研究2021年2月24日 — EICP木质素联合固化技术能提高土体的抗剪强度和粘聚力,通过微观试验可以看出,木质素的作用机理主要是改变了EICP产生分散碳酸钙的方式,为碳酸钙提供成核位点,在土颗粒间隙中将无规律的碳酸钙聚拢成型。EICP木质素联合固化粉土的试验研究

胶结物质驱动的土壤团聚体形成过程与稳定机制 issas
2023年8月6日 — 碳酸钙对团聚体稳定性的作用可能依赖于碳酸钙颗粒分布和黏粒含量,高含量黏粒和细颗粒碳酸钙对土壤有很好的团聚作用 [29]。 在弱碱性氧化环境的黄土堆积过程中,粉尘堆积物可通过雨水、霜雪、生物活动等作用发生次生碳酸盐化,次生碳酸盐与黄土粉尘中黏粒物质结合形成微团聚体 [ 30 ] 。2024年8月1日 — 摘要 针对华北地区广泛分布的黄河冲积粉土级配差、强度低的问题,采用微生物诱导碳酸钙沉淀(MICP)技术对其进行加固。通过三轴试验研究加固粉土的强度特性,通过微观结构测试分析其微观机理;结合宏观现象和微观机理揭示强度加固机理。结果表明:MICP加固后粉土的强度得到了大幅提升;其黏聚力和 微生物加固粉土的强度特性及加固机理研究2023年5月20日 — 对于缺乏粘聚力的颗粒材料,如砂子等,在干燥条件下,其安息角等于内摩擦角(存在争论)。 这里用无限边坡(Infinite Slope Analysis)分析的方法来进行推导并假定潜在滑动面与边坡表面平行(易于应用极限平衡法, 并且如果不平行, 也就不满足无限边坡的假定)从摩擦角到内摩擦角再到有效内摩擦角与边坡稳定 知乎2021年2月27日 — 增加,红黏土黏聚力、内摩擦角以及抗剪强度呈现先减小后增大的趋势;纳米碳酸钙的掺入改变了原有的介质电荷pH值,使 得红黏土原有的氧化铁胶结吸附平衡发生改变,形成新的钙质胶结团粒,改变了红黏土的强度特性;加入纳米碳酸钙后起始纳米碳酸钙影响下红黏土强度特性试验研究

钙质砂的胶结性及对力学性质影响的实验研究。
2009年8月4日 — 瑚、海藻、贝壳等)成因的、富含碳酸钙或碳酸镁等物质的特殊岩土介质,主要分布于热带海洋中。钙质 砂的主要化学成分为CaCO。。钙质砂有骨骸、球粒、包粒和团粒4种颗粒类型[1’2]。棱角大,有内孔隙,孔隙比高,易破碎,是钙质砂的主要特征[1’2]。2021年2月27日 — 角降低较小;密实度90%时,含水量大于5%,黏聚力降低较小;(3)密实度对吹填珊瑚砂的黏聚力影响规律不明显,密实度对 内摩擦角影响较显著,当含水量大于5%时,随着密实度的增加内摩擦角显著增大;(4)在高荷载条件下,含水量和密实度对中国南海岛礁吹填珊瑚砂剪切力学特性2016年4月26日 — (3)硝酸会溶蚀蒙脱石,导致土体粘聚力降低,浸泡中期粘聚力增大的机理尚不明确。超纯水和碱性条件下均生成了沸石类矿物和胶结物水化硅酸钙(CSH)。超纯水条件下,还有胶结物碳酸钙(CaCO3)生成。 这些新生胶结物的胶结键强度远大于 中国科学院机构知识库网格系统: 蒙脱石在酸碱条件下的力学效应